Publications
Papers on the pipeline
1. Behling, R., Bello-Cruz, Y., Santos, L.-R., & Silva, P. J. S.
(2024). Basis pursuit by inconsistent alternating projections
[In Progress].
2. Filippozzi, R., Gonçalves, D. S., & Santos, L.-R. (2024).
Accelerating the Spherical Triangle Algorithm for the
Convex-Hull Membership Problem [In Progress].
3. Villas-Bôas, F. R., Santos, L.-R., & Oliveira, A. R. L. (2023).
An Interior Point Method with no centrality
parameter [In Progress].
4. Chu, Y.-C., Santos, L.-R., & Udell, M. (2024). Randomized
Nyström Preconditioned
Interior Point-Proximal Method of Multipliers
(No. arXiv:2404.14524). arXiv. https://doi.org/10.48550/arXiv.2404.14524
Peer reviewed articles on academic journals
1. Behling, R., Bello-Cruz, Y., Iusem, A., Liu, D., & Santos, L.-R.
(2024). A finitely convergent circumcenter method for the Convex
Feasibility Problem. SIAM J. Optim. In press. https://arxiv.org/abs/2308.09849
2. Behling, R., Bello-Cruz, Y., Iusem, A. N., & Santos, L.-R.
(2024). On the centralization of the circumcentered-reflection method.
Mathematical Programming, 205, 337–371. https://doi.org/10.1007/s10107-023-01978-w
3. Behling, R., Bello-Cruz, Y., Iusem, A., Liu, D., & Santos, L.-R.
(2024). A successive centralized circumcenter reflection method for the
convex feasibility problem. Computational Optimization and
Applications, 87(1), 83–116. https://doi.org/10.1007/s10589-023-00516-w
4. Arefidamghani, R., Behling, R., Iusem, A. N., & Santos, L.-R.
(2023). A circumcentered-reflection method for finding common fixed
points of firmly nonexpansive operators. Journal of Applied and
Numerical Optimization, 5(3), 299–320. https://doi.org/10.23952/jano.5.2023.3.02
5. Behling, R., Bello-Cruz, Y., Lara-Urdaneta, H., Oviedo, H., &
Santos, L.-R. (2023). Circumcentric directions of cones.
Optimization Letters, 17, 1069–1081. https://doi.org/10.1007/s11590-022-01923-4
6. Arefidamghani, R., Behling, R., Bello-Cruz, Y., Iusem, A. N., &
Santos, L.-R. (2021). The circumcentered-reflection method achieves
better rates than alternating projections. Computational
Optimization and Applications, 79(2), 507–530. https://doi.org/10.1007/s10589-021-00275-6
7. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2021).
Infeasibility and error bound imply finite convergence of alternating
projections. SIAM Journal on Optimization, 31(4),
2863–2892. https://doi.org/10.1137/20M1358669
8. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2021). On the
Circumcentered-Reflection Method for the Convex
Feasibility Problem. Numerical Algorithms, 86,
1475–1494. https://doi.org/10.1007/s11075-020-00941-6
9. Santos, L.-R., & Bassanezi, R. C. (2009). Sistemas P-fuzzy Unidimiensionais com Condição
Ambiental. Biomatemática, 19(1), 11–24. http://www.ime.unicamp.br/~biomat/bio19_art2.pdf
10. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2020). The
block-wise circumcentered–reflection method. Computational
Optimization and Applications, 76(3), 675–699. https://doi.org/10.1007/s10589-019-00155-0
11. Bueno, L. F., Haeser, G., & Santos, L.-R. (2020). Towards an
efficient augmented Lagrangian method for convex quadratic
programming. Computational Optimization and Applications,
76(3), 767–800. https://doi.org/10.1007/s10589-019-00161-2
12. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2018).
Circumcentering the Douglas–Rachford method.
Numerical Algorithms, 78(3), 759–776. https://doi.org/10.1007/s11075-017-0399-5
13. Santos, L.-R., Villas-Bôas, F. R., Oliveira, A. R. L., & Perin,
C. (2019). Optimized choice of parameters in interior-point methods for
linear programming. Computational Optimization and
Applications, 73(2), 535–574. https://doi.org/10.1007/s10589-019-00079-9
14. Siqueira, A. S., Silva, R. C. da, & Santos, L.-R. (2016).
Perprof-py: A Python Package for Performance
Profile of Mathematical Optimization Software.
Journal of Open Research Software, 4(e12), 5. https://doi.org/10.5334/jors.81
15. Filippozzi, R., Gonçalves, D. S., & Santos, L.-R. (2023).
First-order methods for the convex hull membership problem. European
Journal of Operational Research, 306(1), 17–33. https://doi.org/10.1016/j.ejor.2022.08.040
16. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2018). On the
linear convergence of the circumcentered-reflection method.
Operations Research Letters, 46(2), 159–162. https://doi.org/10.1016/j.orl.2017.11.018
17. Araújo, G. H. M., Arefidamghani, R., Behling, R., Bello-Cruz, Y.,
Iusem, A., & Santos, L.-R. (2022). Circumcentering approximate
reflections for solving the convex feasibility problem. Fixed Point
Theory and Algorithms for Sciences and Engineering,
2022(1), 30. https://doi.org/10.1186/s13663-021-00711-6
Peer reviewed proceedings and book chapters
1. Filippozzi, R., Gonçalves, D. S., & Santos, L.-R. (2023).
Accelerating the Spherical Triangle Algorithm for the
Convex-Hull Membership Problem. 4. https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
2. Villas-Bôas, F. R., Oliveira, A. R. L., Perin, C., & Santos,
L.-R. (2012). Polynomial Inequality Systems in
Neighborhoods of the Central Path.
Proceedings of the 3rd IMA Conference on Numerical
Linear Algebra and Optimisation, 26.
3. Santos, L.-R., Villas-Bôas, F. R., Oliveira, A. R. L., & Perin,
C. (2011). On a Polynomial Merit Function for
Interior Point Methods. Proceedings of the 19th
Triennial Conference of the International Federation of Operational
Research Societies, 121.
4. Ertel, P. C. R., & Santos, L.-R. (2021). Otimização e análise
teórica das máquinas de vetores suporte aplicadas à classificação de
dados. Proceeding Series of the Brazilian Society of Computational
and Applied Mathematics, 8. https://proceedings.sbmac.org.br/sbmac/article/view/135598
5. Silva, T. da, & Santos, L.-R. (2021). Métodos iterativos para
solução de sistemas lineares: aceleração usando reflexões
circuncentradas. Proceeding Series of the Brazilian Society of
Computational and Applied Mathematics, 8. https://proceedings.sbmac.emnuvens.com.br/sbmac/article/view/136002
6. Filippozzi, R., Gonçalves, D. S., & Santos, L.-R. (2022).
First-order methods for the convex-hull membership problem and
applications. Proceeding Series of the Brazilian Society of
Computational and Applied Mathematics, 9. https://proceedings.sbmac.emnuvens.com.br/sbmac/article/view/3910
Theses
1. Santos, L.-R. (2004). Reconhecimento de faces utilizando
pré-processamento através da transformada log-radon [Graduate
dissertation (in portuguese), Universidade Regional de
Blumenau]. https://bu.furb.br/consulta/portalConsulta/recuperaMfnCompleto.php?menu=rapida&CdMFN=271220
2. Santos, L.-R. (2008). Strategies for pests control: p-fuzzy
systems and hybrid control [Master's thesis (in portuguese),
IMECC/Unicamp]. https://doi.org/10.47749/T/UNICAMP.2008.434021
3. Santos, L.-R. (2014). Optimized choice of parameters in
interior-point methods for linear programming [PhD's thesis (in
portuguese), IMECC/Unicamp]. https://doi.org/10.47749/T/UNICAMP.2014.931062