1. Behling, R., Bello-Cruz, Y., Iusem, A., Liu, D., & Santos, L.-R.
(2024). A finitely convergent circumcenter method for the
Convex
Feasibility Problem.
SIAM J. Optim. In press.
https://arxiv.org/abs/2308.09849
2. Behling, R., Bello-Cruz, Y., Iusem, A. N., & Santos, L.-R.
(2024). On the centralization of the circumcentered-reflection method.
Mathematical Programming,
205, 337–371.
https://doi.org/10.1007/s10107-023-01978-w
3. Behling, R., Bello-Cruz, Y., Iusem, A., Liu, D., & Santos, L.-R.
(2024). A successive centralized circumcenter reflection method for the
convex feasibility problem.
Computational Optimization and
Applications,
87(1), 83–116.
https://doi.org/10.1007/s10589-023-00516-w
4. Arefidamghani, R., Behling, R., Iusem, A. N., & Santos, L.-R.
(2023). A circumcentered-reflection method for finding common fixed
points of firmly nonexpansive operators.
Journal of Applied and
Numerical Optimization,
5(3), 299–320.
https://doi.org/10.23952/jano.5.2023.3.02
5. Behling, R., Bello-Cruz, Y., Lara-Urdaneta, H., Oviedo, H., &
Santos, L.-R. (2023). Circumcentric directions of cones.
Optimization Letters,
17, 1069–1081.
https://doi.org/10.1007/s11590-022-01923-4
6. Arefidamghani, R., Behling, R., Bello-Cruz, Y., Iusem, A. N., &
Santos, L.-R. (2021). The circumcentered-reflection method achieves
better rates than alternating projections.
Computational
Optimization and Applications,
79(2), 507–530.
https://doi.org/10.1007/s10589-021-00275-6
7. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2021).
Infeasibility and error bound imply finite convergence of alternating
projections.
SIAM Journal on Optimization,
31(4),
2863–2892.
https://doi.org/10.1137/20M1358669
8. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2021). On the
Circumcentered-Reflection Method for the
Convex
Feasibility Problem.
Numerical Algorithms,
86,
1475–1494.
https://doi.org/10.1007/s11075-020-00941-6
9. Santos, L.-R., & Bassanezi, R. C. (2009). Sistemas
P-fuzzy Unidimiensionais com
Condição
Ambiental.
Biomatemática,
19(1), 11–24.
http://www.ime.unicamp.br/~biomat/bio19_art2.pdf
10. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2020). The
block-wise circumcentered–reflection method.
Computational
Optimization and Applications,
76(3), 675–699.
https://doi.org/10.1007/s10589-019-00155-0
11. Bueno, L. F., Haeser, G., & Santos, L.-R. (2020). Towards an
efficient augmented
Lagrangian method for convex quadratic
programming.
Computational Optimization and Applications,
76(3), 767–800.
https://doi.org/10.1007/s10589-019-00161-2
12. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2018).
Circumcentering the
Douglas–
Rachford method.
Numerical Algorithms,
78(3), 759–776.
https://doi.org/10.1007/s11075-017-0399-5
13. Santos, L.-R., Villas-Bôas, F. R., Oliveira, A. R. L., & Perin,
C. (2019). Optimized choice of parameters in interior-point methods for
linear programming.
Computational Optimization and
Applications,
73(2), 535–574.
https://doi.org/10.1007/s10589-019-00079-9
14. Siqueira, A. S., Silva, R. C. da, & Santos, L.-R. (2016).
Perprof-py:
A Python Package for
Performance
Profile of
Mathematical Optimization Software.
Journal of Open Research Software,
4(e12), 5.
https://doi.org/10.5334/jors.81
15. Filippozzi, R., Gonçalves, D. S., & Santos, L.-R. (2023).
First-order methods for the convex hull membership problem.
European
Journal of Operational Research,
306(1), 17–33.
https://doi.org/10.1016/j.ejor.2022.08.040
16. Behling, R., Bello-Cruz, Y., & Santos, L.-R. (2018). On the
linear convergence of the circumcentered-reflection method.
Operations Research Letters,
46(2), 159–162.
https://doi.org/10.1016/j.orl.2017.11.018
17. Araújo, G. H. M., Arefidamghani, R., Behling, R., Bello-Cruz, Y.,
Iusem, A., & Santos, L.-R. (2022). Circumcentering approximate
reflections for solving the convex feasibility problem.
Fixed Point
Theory and Algorithms for Sciences and Engineering,
2022(1), 30.
https://doi.org/10.1186/s13663-021-00711-6